Recorded at CDFAM Computational Design Symposium, Amsterdam , 2025
https://cdfam.com/amsterdam-2025/
Organization: ToffeeX
Presenter: Thomas Rees
Physics-Driven Generative Design for Laser Powder Bed Fusion in Aerospace
Presentation Abstract
Laser Powder Bed Fusion (L-PBF) has shown transformative potential for the aerospace industry, with substantial investments being directed globally to leverage its benefits. However, broader industrial adoption of L-PBF faces barriers primarily due to limitations in the performance of components manufactured with the technique, productivity of the technique, and scalability of the technology. These limitations currently hinder L-PBF’s competitiveness with traditional manufacturing methods for aerospace, affecting both cost-efficiency and sustainability. In this talk we will present a physics-driven generative design framework tailored for L-PBF, leveraging advanced multi-physics simulations to tackle the complex thermo-fluid-structural design challenges that arise in aerospace applications. The framework integrates computational fluid dynamics, heat transfer, and structural mechanics simulations. By coupling these simulation-driven insights with generative design techniques, our approach offers a robust pathway to create high-performance aerospace components. Results from case studies demonstrate the ability of our framework to reduce costs and design times while achieving superior mechanical properties under aerospace-relevant loading conditions. Read the CDFAM Interview with ToffeeX