Recorded at CDFAM Computational Design Symposium, Amsterdam , 2025 https://cdfam.com/amsterdam-2025/
Organization: DTU
Presenter: Luca Breseghello
Stress-Based Design Of Lightweight Horizontal Structures For 3D Concrete Printing Presentation Abstract Concrete is one of the most widely used materials in construction, but it’s also a major contributor to CO₂ emissions. In mid-rise buildings, slabs and beams alone account for over 40% of the concrete used. This raises an important question: how can we build these elements more efficiently while reducing their environmental impact? In this talk, I’ll share how robotic 3D Concrete Printing (3DCP) and structural optimisation can work together to create lighter, more material-efficient beams and slabs. By integrating computational design, Finite Element Analysis (FEA), and stress-based material placement, we developed a workflow that reduces waste while maintaining strength. I’ll introduce 3DLightBeam and 3DLightBeam+, beams with double the strength-to-weight ratio of conventional 3DCP beams, and 3DLightSlab, a ribbed slab designed for efficiency. Structural testing and Life-Cycle Analysis (LCA) confirmed that this approach can lead to more sustainable concrete structures. This presentation will explore the practical potential of 3DCP in structural applications and what it means for the future of concrete construction. Interview: Stress-Based Design Of
Lightweight Horizontal Structures For 3D Concrete Printing – Luca Breseghello – DTU
Join us at CDFAM, October 29–30, to connect with the people defining the future of computational design.
Not just the speakers on stage, but the researchers developing new algorithms, engineers scaling workflows into production, architects rethinking building systems, and designers pushing the boundaries of products and materials. CDFAM is where leaders and practitioners from across industries come together, sharing methods, exchanging ideas, and building collaborations that carry far beyond the event itself.